Рейтинг@Mail.ru
[Войти] [Зарегистрироваться]

Наши друзья и партнеры

UnixForum
Беспроводные выключатели nooLite

Lines Club

Ищем достойных соперников.

  • Техосмотр купить
  • Услуги техосмотра. Выдача диагностической карты. Быстро и выгодно
  • картадляосаго.рф

Книги по Linux (с отзывами читателей)

Библиотека сайта или "Мой Linux Documentation Project"

На главную -> MyLDP -> Тематический каталог -> Процессы в Linux
Журнал "Мир ПК", #06, 2000 год // Издательство "Открытые Системы" (www.osp.ru)
Постоянный адрес статьи: http://www.osp.ru/pcworld/2000/06/054.htm

Процессы, задачи, потоки и нити

Виктор Хименко

16.06.2000

Процессы в системе

Рассказ о жизни процессов естественно начать с самого начала ≈ с их появления на свет. Так вот, процессы размножаются... почкованием: системный вызов Linux, создающий новый процесс, называется clone, а дочерний процесс представляет собой почти точную копию родительского. Только далее он выполняет назначенную ему функцию, а исходный процесс ≈ то, что написано в программе после вызова clone. Потом отличий может стать больше, так что пути-дороги процессов способны разойтись достаточно далеко. Но если нам нужно этому воспрепятствовать, вызов clone позволит задать флаги, указывающие, что порожденный процесс будет иметь со своим предком общие:

  • адресное пространство (CLONE_VM);
  • информацию о файловой системе (CLONE_FS): корневой и текущий каталоги, а также umask;
  • таблицу открытых файлов (CLONE_FILES);
  • таблицу обработчиков сигналов (CLONE_SIGHAND);
  • родителя (CLONE_PARENT) ≈ конечно, в этом случае будет порожден не дочерний, а сестринский процесс.

Нить и задача

Нити, т. е. параллельно выполняемые части одной программы, в стандартной библиотеке поддержки многонитевых программ Linux реализованы просто как процессы, порожденные с указанием флага CLONE_VM, и с точки зрения ядра системы ничем не отличаются от любых других процессов. Однако в некоторых альтернативных реализациях многонитевых библиотек дело обстоит иначе.

Помимо процессов описанного выше вида бывают еще ╚ущербные╩, порождаемые с помощью функции kernel_thread для внутренних системных нужд. У них нет параметров командной строки, как правило, они не имеют открытых файлов и т. д. Поскольку, несмотря на свою ущербность, эти процессы все равно фигурируют в списке задач, в литературе иногда различают полноценные процессы, порожденные из ╚пространства пользователя╩ (userspace), и задачи, т. е. все процессы, включая внутренние процессы ядра.

Процесс и программа

Вы скажете: все это замечательно, но если новый процесс ≈ всегда копия существующего, то каким образом в системе ухитряются работать разные программы? И откуда берется самая первая из них?

Процессы, выполняющие разные программы, образуются благодаря применению имеющихся в стандартной библиотеке Unix функций ╚семейства exec╩: execl, execlp, execle, execv, execve, execvp. Эти функции отличаются форматом вызова, но в конечном итоге делают одну и ту же вещь: замещают внутри текущего процесса исполняемый код на код, содержащийся в указанном файле. Файл может быть не только двоичным исполняемым файлом Linux, но и скриптом командного интерпретатора, и двоичным файлом другого формата (например, классом java, исполняемым файлом DOS). В последнем случае способ его обработки определяется настраиваемым модулем ядра под названием binfmt_misc.

Таким образом, операция запуска программы, которая в DOS и Windows выполняется как единое целое, в Linux (и в Unix вообще) разделена на две: сначала производится запуск, а потом определяется, какая программа будет работать. Есть ли в этом смысл и не слишком ли велики накладные расходы? Ведь создание копии процесса предполагает копирование весьма значительного объема информации.

Смысл в данном подходе определенно есть. Очень часто программа должна совершить некоторые действия еще до того, как начнется собственно ее выполнение. Скажем, в разбиравшемся выше примере мы запускали две программы, передающие друг другу данные через неименованный канал. Такие каналы создаются системным вызовом pipe; он возвращает пару файловых дескрипторов, с которыми в нашем случае оказались связаны стандартный поток ввода (stdin) программы wc и стандартный поток вывода (stdout) программы dd. Стандартный вывод wc (как, кстати, и стандартный ввод dd, хотя он никак не использовался) связывался с терминалом, а кроме того, требовалось, чтобы командный интерпретатор после выполнения команды не потерял связь с терминалом. Как удалось этого добиться? Да очень просто: сначала были отпочкованы процессы, затем проделаны необходимые манипуляции с дескрипторами файлов и только после этого вызван exec.

Аналогичного результата (как показывает, в частности, пример Windows NT) можно было бы добиться и при запуске программы за один шаг, но более сложным путем. Что же касается накладных расходов, то они чаще всего оказываются пренебрежимо малыми: при создании копии процесса его индивидуальные данные физически никуда не копируются. Вместо этого используется техника, известная под названием copy-on-write (копирование при записи): страницы данных обоих процессов особым образом помечаются, и только тогда, когда один процесс пытается изменить содержимое какой-либо своей страницы, она дублируется.

Листинг 2. Окончание процедуры инициализации ядра Linux

if (execute_command) 
execve(execute_command,argv_init, envp_init);
execve(■/sbin/init■,argv_init,envp_init);        
execve(■/etc/init■,argv_init,envp_init);        
execve(■/bin/init■,argv_init,envp_init);        
execve(■/bin/sh■,argv_init,envp_init);        
panic(■No init found.  Try passing init= option to kernel.■);}

Первый процесс в системе запускается при инициализации ядра. Пожалуй, даже человеку, не умеющему программировать, достаточно будет взглянуть на конец процедуры инициализации ядра Linux (см. листинг 2), чтобы понять, как определяется выполняемая в этом процессе программа: вначале делается попытка ╚переключить╩ процесс на файл, указанный в командной строке ядра (есть и такая...), потом на файлы /sbin/init, /etc/init, /bin/init и напоследок на /bin/sh.

Смерть процесса

Рассмотрев рождение процесса, логично будет обсудить и его смерть. Когда процесс закончит работу (нормально или аварийно), он уничтожается, освобождая все использовавшиеся им ресурсы компьютера.

Обратимся еще раз к примеру, рассмотренному выше. Когда мы нажатием <Ctrl>+C принудительно завершили выполнение программ dd и wc, соответствующие процессы были уничтожены, и на экране появилось приглашение командного интерпретатора. Пока программы работали, приглашения не было: интерпретатор находился в состоянии ожидания, в которое перешел, послав специальный системный вызов (в действительности таких вызовов существует несколько: wait, waitpid, wait3, wait4). После окончания работы программ вызов вернул управление интерпретатору, и тот выдал на терминал приглашение.

Если родительский процесс по какой-то причине завершится раньше дочернего, последний становится ╚сиротой╩ (orphaned process). ╚Сироты╩ автоматически ╚усыновляются╩ программой init, выполняющейся в процессе с номером 1, которая и принимает сигнал об их завершении.

Если же потомок уже завершил работу, а предок не готов принять от системы сигнал об этом событии, то потомок не исчезает полностью, а превращается в ╚зомби╩ (zombie); в поле Stat такие процессы помечаются буквой Z. Зомби не занимает процессорного времени, но строка в таблице процессов остается, и соответствующие структуры ядра не освобождаются. После завершения родительского процесса ╚осиротевший╩ зомби на короткое время также становится потомком init, после чего уже ╚окончательно умирает╩.

Наконец, процесс может надолго впасть в ╚сон╩, который не удается прервать: в поле Stat это обозначается буквой D. Процесс, находящийся в таком состоянии, не реагирует на системные запросы и может быть уничтожен только перезагрузкой системы.

О сигналах

Постойте, но ведь приглашение командного интерпретатора появилось и тогда, когда мы нажали <Ctrl>+Z, хотя программы не заканчивали работу, и, следовательно, вызов wait* не мог вернуть управление! Выдача сообщения Stopped (процесс остановлен) и затем приглашения к вводу была реакцией на сигнал CHLD, который ядро посылает при нажатии <Ctrl>+Z предкам ≈ в данном случае одному предку ≈ процессов, работающих с терминалом (сами процессы получают свой сигнал).

Сигналы посылаются одними процессами другим с помощью команды, которая носит устрашающее название kill, хотя в общем случае никого не убивает. Все зависит от конкретного сигнала, и практически любой сигнал при необходимости может быть процессом проигнорирован. Исключение составляют KILL, который ╚без разговоров╩ уничтожает процесс, и STOP, который его аналогичным образом останавливает.

Правила о том, какой процесс какому имеет право послать сигнал, достаточно сложны. Суперпользователь, очевидно, может посылать сигналы любым процессам, а обычный пользователь ≈ только своим, но здесь есть масса тонкостей: например, нельзя послать сигнал CONT (продолжить выполнение остановленного процесса) своему же процессу, запущенному в другой сессии.

Работа с нитями требует особой техники, поскольку одни сигналы должны ╚доводиться до сведения╩ всех нитей, а другие ≈ посылаться индивидуально. В Linux 2.2 это делалось путем довольно хитрых манипуляций со специальной нитью, единственным назначением которой было управление другими нитями. В версии 2.4 ядро может следить за нитями за счет нового флага CLONE_PARENT (таким образом, если одна нить породит другую и закончит работу, то порожденная нить не останется ╚сиротой╩) и нескольких специальных правил доставки сигналов, так что надобность в специальной нити отпала.

Компьютерная демонология

Демоном (daemon) в Unix (и в Linux) называется процесс, предназначенный для работы в фоновом режиме без терминала и выполняющий какие-либо действия для других процессов (не обязательно на вашей машине). Обычно демоны тихо занимаются своим делом, и вспоминают о них только в случае каких-либо неполадок в их работе: например, демону начинает недоставать места, и он посылает пользователю сообщение об этом, или демон перестает работать, и вам звонит босс с вопросом, почему у него принтер опять не печатает и когда это прекратится...

На многих машинах демоны, обслуживающие процессы других компьютеров, нужны достаточно редко, так что держать их в памяти постоянно загруженными и транжирить на это ресурсы системы нерационально. Для управления их работой был создан супердемон, которого зовут вовсе не Вельзевулом (в компьютерных демонах вообще мало ╚демонического╩ ≈ они ближе демонам Максвелла), а куда скромнее ≈ inetd (что, как вы догадались, является сокращением от Internet daemon).

В конфигурационном файле inetd (/etc/inetd.conf) записано, какой демон обслуживает обращения к какому сервису Internet. Обычно с помощью inetd вызываются программы pop3d, imap4d, ftpd, telnetd (предоставляю читателю определить, какие именно сервисы они обслуживают) и некоторые другие. Эти программы не являются постоянно активными, а значит, не могут считаться демонами в строгом смысле слова, но поскольку они порождаются ╚полноценным╩ демоном, их все равно так называют.

Продвинутые средства общения

Процессы посылают друг другу сигналы, передают данные через неименованные и именованные каналы, а также ╚гнезда╩. Все это замечательно, но как быть, если один процесс должен передавать другому огромные объемы информации и притом быстро (это нужно, например, при воспроизведении видео)? Могут ли процессы, адресные пространства которых строго разделены, каким-либо образом получить в совместное пользование часть памяти? Да, с помощью временных файлов.

Для передачи обширных массивов данных между процессами служит системный вызов mmap, представляющий собой довольно неожиданное применение страничной виртуальной памяти. Он позволяет, грубо говоря, сказать: ╚я хочу обращаться к такому-то участку такого-то файла как к оперативной памяти╩. Данные, которые процесс читает из указанной области памяти, по мере надобности считываются из файла, а те, которые он туда пишет, когда-нибудь попадут на диск. Но процесс сам не работает с диском, этим занимается ядро.

Если два процесса обращаются таким образом к одному и тому же участку одного и того же файла, данные будут переданы непосредственно от одного процесса к другому. Конечно, периодически ядро сбрасывает данные на диск. В некоторых случаях это полезно, но когда mmap обеспечивает только общение процессов между собой, обмен с диском лишь замедляет работу. Для процессов, имеющих общего предка, можно использовать флаг MAP_ANONYMOUS, указывающий, что данные не должны попадать в файл (дескриптор файла тогда никак не используется и может быть любым).

Вызов mmap применяется также для ╚загрузки в память╩ исполняемых файлов и библиотек, так что если программа использует 25 библиотек общим объемом во много десятков мегабайт, это вовсе не значит, что она и в памяти будет занимать такое же количество мегабайт.

С помощью временных файлов можно, кроме того, синхронизировать работу процессов, используя возможности системы, предназначенные для работы с рекомендательными (advisory) блокировками файлов. Это позволяют сделать системные вызовы fcntl и его более быстрый и простой вариант flock.

Иногда создавать временные файлы нежелательно, поэтому в Linux включены также функции для общения процессов из Unix SVR4 (Unix System V Release 4). Это shmget ≈ создание области памяти для общения процессов, semget ≈ создание семафора, msgget ≈ создание очереди сообщений. В версии 2.4 к ним добавились еще более мощные функции mq_open, shm_open из SUS2 (Single Unix Specification Version 2).

Получение информации о процессах

Для работы с информацией о процессах, которую выводят на терминал программы ps и top, в Linux используется достаточно необычный механизм: особая файловая система procfs. В большинстве дистрибутивов она монтируется при запуске системы как каталог /proc. Данные о процессе с номером 1 (обычно это /sbin/init) содержатся в подкаталоге /proc/1, о процессе с номером 364 ≈ в /proc/364, и т. д. Все файлы, открытые процессом, представлены в виде символических ссылок в каталоге /proc/<pid>/fd, а ссылка на корневой каталог процесса хранится как /proc/<pid>/root.

Со временем у файловой системы procfs появились и другие функции. Например, командой

echo 100000 > /proc/sys/fs/file-max

суперпользователь может определить, что в системе разрешается открыть до 100 000 файлов, а команда

echo 0 > /proc/sys/kernel/cap-bound

отнимет у всех процессов в системе все дополнительные права, т. е. фактически лишит систему понятия ╚суперпользователь╩.

Полезную информацию позволяет получить программа lsof, которая выдает список всех файлов, используемых сейчас процессами, включая каталоги, занятые потому, что какой-либо процесс использует их в качестве текущего или корневого; разделяемые библиотеки, загруженные в память; и т. д.

В следующей статье мы поговорим о командном интерпретаторе, его роли в системе и вообще о том, как из отдельных процессов и файлов складывается нечто единое.

ОБ АВТОРЕ

Виктор Хименко, e-mail: khim@mccme.ru


Журнал "Мир ПК", #06, 2000 год // Издательство "Открытые Системы" (www.osp.ru)
Постоянный адрес статьи: http://www.osp.ru/pcworld/2000/06/054.htm


Эта статья еще не оценивалась
Вы сможете оценить статью и оставить комментарий, если войдете или зарегистрируетесь.
Только зарегистрированные пользователи могут оценивать и комментировать статьи.

Комментарии отсутствуют